Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.
نویسندگان
چکیده
The persistent sodium current (I(NaP)) is known to play a role in rhythm generation in different systems. Here, we investigated its contribution to locomotor pattern generation in the neonatal rat spinal cord. The locomotor network is mainly located in the ventromedial gray matter of upper lumbar segments. By means of whole cell recordings in slices, we characterized membrane and I(NaP) biophysical properties of interneurons located in this area. Compared with motoneurons, interneurons were more excitable, because of higher input resistance and membrane time constant, and displayed lower firing frequency arising from broader spikes and longer AHPs. Ramp voltage-clamp protocols revealed a riluzole- or TTX-sensitive inward current, presumably I(NaP), three times smaller in interneurons than in motoneurons. However, in contrast to motoneurons, I(NaP) mediated a prolonged plateau potential in interneurons after reducing K(+) and Ca(2+) currents. We further used in vitro isolated spinal cord preparations to investigate the contribution of I(NaP) to locomotor pattern. Application of riluzole (10 muM) to the whole spinal cord or to the upper lumbar segments disturbed fictive locomotion, whereas application of riluzole over the caudal lumbar segments had no effect. The effects of riluzole appeared to arise from a specific blockade of I(NaP) because action potential waveform, dorsal root-evoked potentials, and miniature excitatory postsynaptic currents were not affected. This study provides new functional features of ventromedial interneurons, with the first description of I(NaP)-mediated plateau potentials, and new insights into the operation of the locomotor network with a critical implication of I(NaP) in stabilizing the locomotor pattern.
منابع مشابه
The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm.
Rhythm generation in neuronal networks relies on synaptic interactions and pacemaker properties. Little is known about the contribution of the latter mechanisms to the integrated network activity underlying locomotion in mammals. We tested the hypothesis that the persistent sodium current (I(NaP)) is critical in generating locomotion in neonatal rodents using both slice and isolated spinal cord...
متن کاملPersistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord.
The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concent...
متن کاملContribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord.
The motor programme executed by the spinal cord to generate locomotion involves glutamate-mediated excitatory synaptic transmission. Using the neonatal rat spinal cord as an in vitro model in which the locomotor pattern was evoked by 5-hydroxytryptamine (5-HT), we investigated the role of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in the generation of locomotor patterns record...
متن کاملSodium Orthovanadate Treatment Reverses Protracted Methionine Administration Induced Schizophrenia Like Behavior in Rats
Suppression of Akt (Protein kinase B) has been implicated in schizophrenia, the effect which has been documented to be reversed by tyrosine phosphatase inhibition. T hus, present study has been designed to study the effect of sodium orthovanadate, a tyrosine phosphatase inhibitor, on protracted methionine administration induced schizophrenia like behavior in rats. Schizophrenia...
متن کاملThe effect of sodium thiopental as a GABA mimetic drug in neonatal period on expression of GAD65 and GAD67 genes in hippocampus of newborn and adult male rats
Objective(s): Development of the nervous system in human and most animals is continued after the birth. Critical role of this period in generation and specialization of the neuronal circuits is confirmed in numerous studies. Any pharmacological intervention in this period may result in structural, functional or behavioral abnormalities. In this study, sodium thiopental a GABA mimetic drug was a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 98 2 شماره
صفحات -
تاریخ انتشار 2007